Quadrature phase detection in atom interferometry

D. Yankelev^{1,2}, C. Avinadav^{1,2}, O. Firstenberg¹, N. Davidson¹

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
RAFAEL Quantum Science Center, Rafael Ltd., Haifa 3102102, Israel
e-mail: dimitry.yankelev@weizmann.ac.il

Cold atom interferometers are among the most sensitive instruments in measuring inertial forces, such as gravity and gravity gradients, accelerations and rotations. The interferometer phase ϕ , representing the inertial measurement, is usually found from its two output ports, C \pm A $\sin(\phi)$. As such, dynamic range is limited to phases of $\phi = [-\pi/2, \pi/2)$, and sensitivity is greatly reduced away from mid-fringe ($\phi = 0$). These limitations challenge the usage of atom interferometers in field conditions.

We present here new interferometer and measurement schemes which together enable full quadrature phase detection, $C \pm A \sin(\varphi)$ and $C \pm A \cos(\varphi)$ [Fig. 1], in a single experimental run and with a single atomic ensemble.

The scheme relies on replacing the final Raman $\pi/2$ -pulse with a combination of Raman and microwave pulses [Fig. 2], which result in four output ports in phase quadrature. It is thus applicable to Raman atom interferometers in any configuration, including large momentum transfer. Velocity- and state-dependent detection allows measurement of all four outputs.

Advantages of quadrature detection are numerous: it doubles the dynamic range with constant sensitivity for all phases; it allows complete fringe parameters estimation from a single experiment run, improving robustness to drifts and removing the need for recurring fringe calibration; and it is expected to enhance precision of ellipse-fitting in gravity gradiometer instruments.

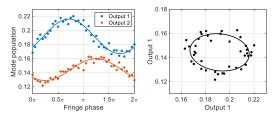


Figure 1: Measurement of two interferometer outputs with $\pi/2$ phase shift between them, shown each vs. absolute fringe phase (left) and each vs. the other (right).

Figure 2: Our composite beam splitter, which creates four quadrature output signals in four atomic states, separated in momentum and internal state.

Keywords: ATOM INTERFEROMETERS, INERTIAL MEASUREMENTS, PHASE DETECTION, QUADRATURE, DYNAMIC RANGE, SENSITIVITY